
Multilevel Methods Combine All Properties that are Essential  

for Fast and Efficient Performance at the Extreme Scale 

Computational science is facing several major challenges with future architectures: non-increasing clock 

speeds are being offset with added concurrency (more cores) and limited power resources are leading 

to reduced memory per core, complex heterogeneous architectures, and higher levels of hardware 

failures (faults).  To meet these challenges and yield fast and efficient performance, solvers need to 

exhibit extreme levels of parallelism, minimize data movement, and demonstrate resilience to faults. 

For many DOE problems, multilevel methods are the only truly scalable solver approaches, because they 

are mathematically optimal and they display excellent parallelization properties.  As a result, these 

solvers are now widely used in scientific simulation codes.  For example, algebraic multigrid has shown 

excellent weak scaling on up to more than 1 million cores and about 4.5 million hardware threads for 

diffusion problems. The importance of these methods does not lessen because of the new architecture 

challenges we are facing. Rather the need to develop new multilevel methods and techniques is greater 

than ever.  

To elaborate on this without overcomplicating the discussion, consider multigrid methods for linear 

systems, keeping in mind that many of the basic comments and conclusions carry over to the general 

setting. Multigrid methods are called optimal methods because they can solve a linear system with N 

unknowns with only O(N) work.  This property gives them the potential to solve ever larger problems on 

proportionally larger parallel machines in constant time.  Multigrid methods achieve this optimality by 

employing two complementary processes: smoothing and coarse-grid correction.  In the classical setting 

of scalar elliptic problems, the smoother (or relaxation method) is a simple iterative algorithm like 

Gauss-Seidel that is effective at reducing high-frequency error.  The remaining low-frequency error is 

then accurately represented and efficiently eliminated on coarser grids via the coarse-grid correction 

step.  Applying this simple multigrid idea to get a scalable multilevel method often involves considerable 

algorithmic research, however.  One has to decide which iterative method to use as a smoother, how to 

coarsen the problem, and how to transfer information between the levels.  When designed properly, a 

multilevel solver will be algorithmically scalable; it will uniformly damp all error frequencies with a 

computational cost that depends only linearly on the problem size.  One consequence of this design is 

that multilevel solvers have natural resilience properties, as has been demonstrated for algebraic 

multigrid [1]. 

It is well known that the overall time spent by a parallel multilevel method on an architecture with p 

processors depends on O(log p) and consequently for very large p, scalability will be impacted. However, 

because of their optimality, multilevel approaches will still be the fastest methods for various problems. 

The approach most commonly used to parallelize multilevel methods is a straightforward data 

decomposition of the fine and coarse grid systems such that all coarse grid subdomains owned by a 

processor are nested (or nearly so).  This minimizes communication during inter-grid transfers, but it has 

the side effect that on the coarsest levels, some processors do not own grid points and hence become 

idle during phases of the algorithm that involve those grids.  It is important to note that, in the sense of 

solving systems as quickly as possible, this is not a major algorithmic issue at any scale of parallelism, 



since multilevel methods not only yield optimal-order work, but also exhibit optimal-order data motion 

in parallel. Since data movement is responsible for a majority of the power consumed in a system, this 

property also makes them naturally power efficient. 

The development of multilevel methods at the extreme scale will require both the investigation of old 

ideas that were abandoned since they turned out to be inefficient on older or even current 

architectures, such as the utilization of idle processes on coarser levels to accelerate convergence,  

multilevel domain decomposition methods, or additive multigrid methods, as well as new ideas. It will 

require both evolutionary as well as revolutionary approaches. 

One approach that has the potential to revolutionize time stepping methods is the application of 

multigrid methods for computing multiple time steps simultaneously. Since clock speeds are no longer 

increasing, a significant challenge for the computational science community on future computer 

architectures is to overcome the sequential nature of current time integration methods, which will be a 

significant bottleneck. Solving for multiple time steps in parallel would remove this bottleneck, and a 

feasible way to achieve this is through multilevel methods. However, developing such methods requires 

significant research. The development of such an algorithm in a two-grid setting (parareal) has already 

been successful, and there are promising multi-level results for a model test problem [2], which indicate 

the potential for speedups of several orders of magnitudes on future exascale architectures. 

Since exascale computers are currently not available, it will be important to develop performance 

models [3] that will guide our research. They can help to evaluate new algorithms as well as 

modifications to current algorithms, identify bottlenecks, and predict performance on machines that 

have not been built yet.  

In conclusion, well-designed multilevel algorithms are ideally suited for exascale computing, since they 

combine all properties that are essential for efficient performance at the extreme scale, i.e. they are 

mathematically optimal, efficiently parallelizable, resilient, power efficient, and will be the fastest 

solvers for various problems. 
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